skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Junkyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In metal‐oxide thin‐film transistors (TFTs), high‐kgate dielectrics often yield a higher electron mobility than SiO2. However, investigations regarding the mechanism of this high‐k“mobility boost” are relatively scarce. To explore this phenomenon, solution‐processed In2O3TFTs are fabricated using eight different gate dielectrics (SiO2, Al2O3, ZrO2, HfO2, and bilayer SiO2/high‐kstructures). With these structures, the total gate capacitance can be varied independently from the semiconductor–dielectric interface to study this mobility enhancement. It is shown that the mobility enhancement is a combination of the effects of areal gate capacitance and interface quality for disordered oxide semiconductor devices. The ZrO2‐gated TFTs achieve the highest mobility by inducing more accumulation charge with higher gate capacitance. Surprisingly, however, when the gate capacitance is held constant, no mobility enhancement is observed with the high‐kgate dielectrics compared to SiO2
    more » « less